Skip to Content

Category Archives: Dairy Basics

Zero events lead to repro success

Creating a pregnancy requires your keen attention to animal health and welfare through a cow’s entire lactation.

The road to creating a pregnancy begins long before you actually inseminate the cow. It begins before you enroll a cow on a synchronization program or start monitoring heats using an activity system. In fact, successfully creating a pregnancy starts before a cow even enters the maternity pen.

IT STARTS BEFORE CALVING

It’s no secret that transition, fresh cow, and overall herd health all play key roles in a cow’s capacity to be a profitable member of your herd. Only the cows that receive proper care and nutrition throughout their transition period and at calving have the chance to become the next 4-EVENT COWS of your herd. A 4-EVENT COW is one that records just four major events in her lactation: 1-FRESH, 2-BRED, 3-CONFIRMED PREGNANT, and 4-DRY.

Of course, maintenance events like pen moves, foot trims, vaccinations, and pregnancy re-checks also occur during a cow’s lactation. But when FRESH, BRED, PREG, & DRY are the only four major events in a cow’s lactation, chances are, she’s a profitable part of your herd.

In this case, we’ll look closer at the first three events, FRESH, BRED & PREG. You’ll see that getting a cow off to the right start after she freshens truly affects her ability to cruise on through those first three major events with no issues.

NUMBERS DON’T LIE

We know that a cow’s reproductive efficiency is impacted by her health and welfare in the transition and fresh cow periods. We wanted to know to what extent. So, we did our research.

We dug into the herd health and reproduction records on 10,000 cows from three different dairies throughout the US. These herds operate at a very high level of management and keep accurately detailed records on all health events in their herds.

We sorted the cows from the three dairies into three different groups. We assigned each cow to a group based on the number of detrimental health event setbacks she had – zero, one, or more than one. By detrimental health events, we mean the ones that cost time, labor and money – including fresh cow events like milk fever, retained placenta, metritis, DA, ketosis, and also mastitis.

We then analyzed first service conception rate, overall conception rate and 21-day pregnancy risk per group. This chart illustrates what we found.

FEWER EVENTS EQUALS SUPERIOR REPRO

It’s easy to see the trend. Cows with zero health events, at and after freshening, have higher repro performance than cows with one and two or more health events.

It’s also important to note that more than 76% of these events happened in the first 30 days in milk. That emphasizes the importance that an animal’s health and welfare throughout her transition and fresh cow periods plays on her ability to become a profitable 4-EVENT COW. Cows that get the best start to their lactation, before and after calving are much more likely to be BRED on time and CONFIRMED PREGNANT after just one service.

The cows that had healthy, trouble-free transition and fresh cow periods went on to have 6% higher first service conception rates than cows with just one health event, and 10% higher first service conception rates than cows with two or more health events. That proves the obvious – that cows not experiencing detrimental health events, especially in the first 30 days of their lactation, are more likely to get bred back sooner.

What changes are you willing to make to get a 10%, jump in first service conception rate?

FOR THE SKEPTICS

You might be thinking that even a 41% first service conception rate and a 21-day pregnancy risk of 27% in the group of cows with multiple health events is still quite impressive. Those numbers come from the high management level at which all these herd operate.

t’s more important to recognize the difference in repro performance between the multi-event cows, and the healthy, trouble-free cows with zero events. A 10% conception rate difference and a 9% pregnancy risk difference is huge!

To take it one step further, we calculate the average annual 21-day preg risk across all three herds at 32%. That means the group of cows with multiple detrimental health events falls 5% short on repro performance as compared to just the average.

WHAT CAN YOU DO WITH THIS INFO?

Creating a pregnancy starts long before you inseminate the cow. If your repro performance is not hitting your goal, then work with a trusted advisor to analyze your herd’s transition and fresh cow health.

If you have too many cases of those fresh cow illnesses, they cost more than the time, labor and money you’re putting in to treat them. They’re impacting your herd’s overall reproductive efficiency.

Put a plan in place to address areas of opportunity in the transition and fresh cow pens to see benefits that extend to your reproductive success. When fresh cow health and welfare are front of mind, you’ll create more of those 4-event cows that 1-freshen with no troubles, 2-are bred just once, 3-are confirmed pregnant after just one service, and 4-go dry with no other health issues.

 

Article and analysis by Ben Voelz, Alta Premier Account Manager

*A version of this article was previously published in Progressive Dairy Magazine. Find it HERE.*

0 Continue Reading →

How to make your next preg check your best one yet

There are so many factors that affect how efficiently you can get cows pregnant. Cow comfort. Cow cooling. Nutrition. Herd health. Genetics. Dry cow, transition and fresh cow management. And the list goes on.

The whole picture can be overwhelming. So to help break it down, we turn to the simple lactation cycle of an Alta 4-EVENT COW. You can make your next preg check the best one yet by focusing on the management practices around the BRED and PREG events of a cow’s lactation.

Here, we share three things you can do today to improve the current reproductive efficiency in your herd – and create more of those profitable Alta 4-EVENT COWS.

1. USE HIGH FERTILITY CONCEPT PLUS SIRES

With countless sire options available, it’s often hard to choose the right bulls for your herd. If part of your goal is to make your next preg check your best one yet, one of the fastest, simplest ways to do that in this moment, is to emphasize sire fertility within your customized genetic plan.

When you use a high fertility sire, you’re upping your odds of creating a pregnancy on the very inseminations where you use that sire. That means more cows that require just one time BRED before they’re confirmed PREGnant.

The trio of high fertility Alta CONCEPT PLUS semen options will improve the fertility in your herd, regardless of which semen type you use.

  • CONCEPT PLUS DxD – High fertility sires will give you a 2%-5% greater chance at creating a pregnancy with conventional semen.
  • 511 CONCEPT PLUS – High fertility SexedULTRA sires offer a 4%-9% conception rate advantage over the average sexed bull.
  • CONCEPT PLUS BxD – High fertility beef x dairy sires give you a 2%-5% greater chance at creating a conventional pregnancy with the beef semen you use in your dairy herd.

2. PRACTICE STRICT COMPLIANCE AND ACCURACY

Regardless of your repro strategy, your cows will not get pregnant if you don’t comply with the timed AI protocols and/or maintain an exceptional level of accuracy with heat detection.

When you use timed AI…

With synchronization programs, we can never emphasize enough that compliance is king. To put that in simple, relatable terms, that means combining four things:

  • The right injection
  • The right dose
  • The right cow
  • The right time

If you miss just one of these four critical factors, any chance at creating a pregnancy based off a synchronization schedule is severely diminished, or even gone.

When you heat detect…

The fastest diagnosis that you have on your farm for an open diagnosis is timely, accurate heat detection. What we mean by this, is that if you wait until your actual preg check day to determine the pregnancy status of every cow bred 28-35 days prior, you’ll be checking some cows that may already have showed heat since they were bred.

Regardless if you use an activity monitor system or tail painting, if you’re able to detect heats with accuracy, you’ll give yourself a chance to catch those cows that come into heat. That means fewer open cows on preg check day.

3. MAINTAIN ACCURATE RECORDS

Using a software program to maintain your records gives you the best chance of sticking to point number two above. When using a timed AI program, you can set up your synchronization schedule in your her management software program so you can follow it to a T.

When it comes to heat detection, having accurate data on freshenings, last service date, and more, will ensure you present the right cows on preg check day and keep your repro program on track.

Of course, other management factors will affect how many cows are confirmed pregnant on your next herd check. But if you do your own, personal check on the three points above, you may find that your next preg check is your best one yet.

 

Article by Glaucio Lopes & Chrissy Meyer

0 Continue Reading →

A genetic approach to improved fertility

Alta 4-EVENT COWS don’t happen by accident. It takes a clear focus on the best day-to-day management, and a long-term plan toward breeding and developing a healthy, fertile, and productive herd.

Here, we focus in on how the decisions you make on breeding and genetics can help you create more 4-EVENT COWS in your herd. We share two ways – plus some proof – that genetics are a key piece of the puzzle in main­taining a trouble-free, profitable herd – now and down the road.

1. CREATE MORE PREGNANCIES NOW

If you’re looking for a fertility advantage on inseminations today, sire fertility rankings are where you’ll want to focus. The Alta CONCEPT PLUS sire fertility evaluation ranks each sire on his ability to get cows pregnant. In fact, regardless which semen type you use in your breeding strategy, you’ll find high fertility CONCEPT PLUS options to fit.

Why should you trust Alta’s CONCEPT PLUS ratings? They are based on real pregnancy check results from progressive dairy herds throughout North America. The evaluation also maintains accuracy by accounting for factors like number of times bred, month/season, technician and breeding code effects.

 

  • CONCEPT PLUS DxD – high fertility sires will give you a 2%-5% greater chance at creating a pregnancy with conventional semen.
  • 511 CONCEPT PLUS – high fertility SexedULTRA sires offer a 4%-9% conception rate advantage over the average sexed bull
  • CONCEPT PLUS BxD – high fertility beef x dairy sires give you a 2%-5% greater chance at creating a conventional pregnancy than the average beef bull used on dairy cows.

If you’re more familiar with sire conception rate (SCR), keep in mind that Alta’s CONCEPT PLUS evaluation is more complete, current, and consistent – and actually served as a basis for SCR. The table below compares what’s included and accounted for in each evaluation.

Comparing sire fertility evaluationsSCRCONCEPT PLUS
Based on real pregnancy check dataXX
Accounts for various factors affecting fertility, including age, month, herd, service number and lactationXX
COMPLETE
Separate ratings available per semen type: conventional, sexed, and beef x dairy breedingsX
Accounts for additional factors affecting fertility, like technician and breeding code effectsX
Data is collected from progressive dairies in North America, and not restricted to US farms on official testX
CURRENT
Ongoing data is collected and evaluated directly from DairyComp and other herd management programsX
Updates are available every other monthX
CONSISTENT
Data is gathered only from large-herd environments with progressive management and reproduction programsX

2. CREATE MORE FERTILE COWS FOR THE FUTURE

While sire fertility selection can get you more pregnancies, and more Alta 4-EVENT COWS now, it takes a long-term plan and genetic selection for female fertility to ensure your herd’s reproduction continues to improve.

Daughter pregnancy rate (DPR), heifer conception rate (HCR) and cow conception rate (CCR) all provide a genetic basis for creating more fertile females. Emphasizing one, or any combination, of these traits in your customized genetic plan means you are breeding a next generation of cows with a greater ability to conceive.

Daughter pregnancy rate is defined as the number of non-pregnant cows that become pregnant within each 21-day period. When a sire has a DPR of 1.0, it means that his daughters are 1% more likely than the average herdmate to become pregnant in a given 21-day window. And each added point of DPR equates to 4 fewer days open.

When referring to HCR and CCR, these traits are defined respectively as a virgin heifer or lactating cow’s ability to conceive. For each of these traits, when a sire has a value of 1.0, it means that his daughters are 1% more likely to conceive than daughters of a sire with an HCR or CCR of 0.0. While DPR is a slightly different calculation than HCR or CCR, all three are a way to measure the fertility of the female herself.

It’s clear to see that the high DPR sires, do indeed, create daughters that become pregnant more quickly than the daughters of low DPR sires.

Lactation 1 cows# of cowsAverage Sire DPRActual Preg rate
Top 25% for highest Sire DPR1742.327%
Bottom 25% for lowest Sire DPR137-1.120%
Difference3.47%

IMPROVE FERTILITY RESULTS – NOW AND INTO THE FUTURE

If your goal is to create more Alta 4-EVENT COWS through improved fertility and reproduction, don’t miss out on the impact that genetics can make in taking you to that next level. Despite the low heritability of fertility traits like DPR, these two tips will help improve your herd’s reproductive results now and into the future:

  1. Improve conception rates now by using sires with the high fertility CONCEPT PLUS rating to boost your herd’s current conception rates.
  2. Improve fertility for the future of your herd by including DPR and/or HCR and CCR in your customized genetic plan to create a next generation of more fertile females.
0 Continue Reading →

A2: genetic fad or future?

Since its 2015 US debut, A2 milk has been a hot topic among dairy producers. Now, the latest A2 buzz comes from consumers. This follows the launch of the A2 Milk Company’s national television advertising campaign, and increased local availability of A2 milk in many grocery stores.

While the curiosity around A2 milk grows, it’s important to evaluate whether this is just another fad in genetic selection, or a real future of the industry.

What is A2 milk?

A2 milk comes from cows with two copies of the A2 gene for beta casein.

Cows’ milk is about 87 percent water and 13 percent solids. Those solids include lactose, fat, protein, and minerals.

To find the A2 gene, we look to the protein in milk. Casein is what makes up the majority of milk protein, and about 30% of that casein is called beta casein. The two most common variants of the beta casein gene are A1 and A2, so any given bovine will be either A1A1, A1A2 or A2A2 for beta casein.

Milk from US cows has traditionally contained a combination of both A1 and A2 beta casein.

Isn’t A2 milk for people with lactose intolerance?

Not necessarily. A2 milk contains the same amount of lactose as non-A2 milk. So a person who has been clinically diagnosed with lactose intolerance will see no benefits from drinking A2 milk.

Some studies have shown the A2 beta casein in milk to be more easily digestible than the A1 beta casein. This means that the discomfort some people experience after drinking milk could actually be linked to an A1 aversion rather than to lactose intolerance.

Since the majority of lactose intolerance cases are self-diagnosed, for those people, A2 milk could be the answer.

How do you get cows that produce A2 milk?

The only way to have a herd that produces A2 milk is through genetic selection.

For a cow to produce true A2 milk, she must have two copies of the A2 gene in her DNA. Each animal receives one copy of the beta casein gene from its sire and one copy from its dam. So for a 100% chance at an A2A2 animal, you must breed an A2A2 bull to an A2A2 cow.

How do you know if your animals are A2?

The only way to know for sure, is a genomic test. Some companies offer A2 genetic testing as an add-on to a full genomic test. Others offer testing for A2 on its own, for as little as $15.

How long will it take to convert your herd to only A2?

This entirely depends on how aggressive your approach is. If your goal is to immediately become 100% A2A2, you can make that happen. To do that, you’d need to genomic test each of your animals, keep only those verified as A2A2, and sell the rest.

A less extreme option for large, multi-site dairies is to genomic test all females, and sort any animals verified as A2A2 all to one site.

But since those aren’t realistic options for most farms, another approach is to limit your sire selection to only bulls confirmed as A2A2. Most AI companies publish this information on their proof sheets and/or websites.

A rough approximation of active AI sires shows about 13% are A1A1, 46% are A1A2 and 41% are A2A2. If you figure that same proportion within your own herd, it would take seven generations of breeding your untested females strictly to A2A2 bulls before you’d reach 99% of A2A2 females.

Group photo of all participants at the first ever Dairy Manager School in the Netherlands

What do you have to lose by selecting A2A2 sires?

With 40%, or more, of active AI sires verified as A2A2, you have a good number of sire options to use in your breeding program. This also means that less than half of the bulls out there are A2A2, so you will miss out on some sire choices by implementing this as part of your breeding program.

Every time you add a filter to your genetic selection criteria, you limit the amount of genetic progress you can make in your herd.

Should you select for A2 in your breeding program?

If you are offered milk premiums for producing A2 milk, or see that option in your future, then selection for A2A2 sires is a wise decision. However, chasing that bonus, if it isn’t guaranteed will mean you limit your genetic options.

No one can predict the future. So it’s hard to tell yet, whether A2 is just a fad, or the future of the industry.

Regardless of your selection decision around A2 sires, make sure it aligns with your dairy’s customized genetic plan. Emphasize the production, health and conformation traits that match your farm’s current situation and future goals. This will help maximize future profitability and genetic progress in the direction of your goals.

0 Continue Reading →

Genetic indexes: can one size fit all?

Indexes are important genetic selection tools. They combine all significant genetic traits into one package – and get producers away from setting minimum criteria for specific traits. That allows you to focus on creating a next generation of cows that are the right fit for your environment.

A global industry standard index like TPI has certainly helped dairy producers improve their herds. The one-size-fits all TPI index places 46% of the total weight on production traits, 28% on health and fertility traits and 26% on conformation traits.

However, an index like this assumes all farms face the same challenges within their herd. It assumes everyone has the same farm goals and milk markets. It simply serves as a general overview for a one-size-fits-all genetic plan.

Consider your goals

When you set your own, customized genetic plan, you can divide the weights as you see fit. To decide which production, health or conformation traits to include, consider your farm’s situation and future goals. How are you paid for milk? In a fluid milk market, you’ll likely put more emphasis on pounds of milk as compared to those who ship milk to a cheese plant. Are you expanding or at a stable herd size? If you’re looking to grow from within to expand your herd, you’ll want to put more emphasis on Productive Life and high fertility sires than the producers who are at a static herd size and able to cull voluntarily.

Your farm’s scenario is unique. With different goals, environments and situations, it’s evident there is no such thing as a one-size-fits-all index.

Make progress where it matters

Just 42 TPI points separate the 100th and 200th ranked genomic bulls on Holstein USA’s December 2017 Top 200 TPI list. Does a separation that small mean these bulls offer similar genetic benefits? Of course not!

To illustrate why, let’s compare three different genetic plan scenarios. One focuses on high production, one on high health, the other on high conformation. The tables below show the sires, traits and genetic averages for the top five Alta sires that meet each customized genetic plan. Notice the extreme amount of progress, and also the opportunity cost for using each particular index.

When high production is the goal, your genetic plan may be set with weights of 70% on production, 15% on health, and 15% on conformation. A team of bulls fitting that plan averages 2400 pounds PTAM and 171 pounds of combined fat and protein.

High Production: 70-15-15MilkProteinFatPLDPRSCSPTATUDCFLCTPI
AltaMONTOYA2089791058.02.22.792.091.840.932864
AltaAKUZAKI264078798.10.72.992.072.520.752747
AltaSPRITE253984884.2-0.83.032.332.131.532684
AltaEMBOSS260777974.5-0.53.071.311.470.812589
AltaWILLIE212375916.82.22.911.972.100.632766
240079926.30.82.961.952.010.932730

When health is the focus, a 30% production, 60% health, 10% conformation genetic plan might make sense for you. That team of bulls delivers averages of +9.5 PL, +5.0 DPR and 2.75 SCS. That’s more than four points higher for DPR than the high production group! However, you give up nearly 1100 pounds of milk and 41 pounds of components to get those high health numbers.

High Health: 30-60-10MilkProteinFatPLDPRSCSPTATUDCFLCTPI
AltaDEPOT910376311.47.02.480.680.801.002693
AltaKALISPELL1727527710.04.22.751.371.571.362734
AltaROBSON83555898.64.72.861.521.351.422802
AltaNITRO129554938.34.42.732.081.991.492871
Alta49ER181061709.04.62.931.071.441.032702
13155278.49.55.02.751.341.431.262760

Lastly, if your genetic goal is to improve conformation, the team below provides an average 2.47 for PTA Type, 2.86 Udder Composite, and nearly two points for Foot & Leg Composite. With that much emphasis on the conformation traits, you’ll sacrifice on pounds of milk, fat and protein, and give up some productive life and fertility.

High Conformation: 25-25-50MilkProteinFatPLDPRSCSPTATUDCFLCTPI
AltaSCION109848798.72.42.762.803.332.112786
AltaDRAGO162156857.22.43.052.962.792.562799
AltaPACKARD77048699.93.82.402.742.391.762839
AltaCR53137867.02.32.941.692.772.042669
AltaDPORT173558697.73.02.962.163.031.162749
115149788.12.82.822.472.861.932768

Now, compare those different genetic plan averages side-by-side. You can see that a mere 38 points separate these groups on TPI average. However, the genetic values for the production, health and conformation traits are extremely different.

MilkProFatPLDPRSCSPTATUDCFLCTPI
High Production: 70-15-15240079926.30.82.961.952.010.932730
High Health: 30-60-10131552789.552.751.341.431.262760
High type: 25-25-50115149788.12.82.822.472.861.932768

15 bulls in the Top 5

Most of the bulls above rank similarly for TPI. But not one bull appears in more than one of the customized genetic plan top-5 lists. With 15 bulls in the top five, it’s clear to see there’s no such thing as a perfect bull. There is, however a perfect genetic plan. It’s the one you customize for your farm to match your current situation and future goals.

Think back to the examples above. Think about TPI (46% production, 28% health, 26% conformation). If your main goal is to increase milk production in your herd, emphasizing too much on the health and conformation traits will mean you sacrifice pounds of milk and total components in the next generation of your herd.

Alternatively, maybe you really want to improve the longevity and fertility of your herd. In that case, an index that focuses on conformation will cost you 1.4 months of productive longevity and more than two points of pregnancy rate in the next generation!

Bringing it together

Sticking to an industry standard index like TPI could get you the best ranking bulls for that index only. But that index doesn’t necessarily match your needs. If you’re looking for a more focused approach, keep these points in mind to make the most progress toward your farm’s goals:

  1. There’s no such thing as a “one-size-fits-all” genetic index.
  2. Work with your trusted Alta advisor to set your own, unique, customized genetic plan. Consider your farm’s goals, future plans and milk market as you decide how much emphasis to place on the production, health and conformation traits.
  3. Maximize progress toward your genetic goals by using a group of the best sires to match your unique genetic plan.
0 Continue Reading →

Proof terminology explained

The letters, numbers and acronyms on a proof sheet can be complicated. Here, we break down the meaning and explanation of the proof indexes, traits and terminology.

Selection indexes

Genetic selection indexes are set by national organizations or breed associations. Genetic indexes help dairy producers focus on a total approach to genetic improvement, rather than limiting progress by single trait selection.

However, each farm is unique, with different situations and future plans. With that in mind, it’s important to understand what traits are included in each industry standard index. When you know what’s included, you can more effectively evaluate if the index truly matches your farm’s goals.

TPI = Total Performance Index

TPI is calculated by the Holstein Association USA (HA-USA) and includes the following trait weightings.

TPI Formula

PRODUCTION TRAITS = 46%

46PRODUCTION TRAIT WEIGHTS
19Pounds of protein
19Pounds of fat
8Feed efficiency

HEALTH TRAITS = 29%

29HEALTH TRAIT WEIGHTS
13Fertility Index
5Productive Life
-4Somatic Cell Score
3Cow Livability
2CDCB Health Trait Index
1Daughter Calving Ease
1Daughter Stillbirth

CONFORMATION TRAITS = 25%

25CONFORMATION TRAIT WEIGHTS
11Udder Composite
8PTA Type
6Foot & Leg Composite

NM$ = Net Merit Dollars

NM$ is a genetic index value calculated by the Council on Dairy Cattle Breeding (CDCB). It describes the expected lifetime profit per cow as compared to the reference base population born in 2015. Trait weightings are generally updated approximately every five years and include emphasis on the following traits. The current trait breakdown is in place as of August 2018. Please note that trait weights are rounded to the nearest percentage.

Net Merit$ breakdown

PRODUCTION TRAITS = 45%

45PRODUCTION TRAIT WEIGHTS
27Pounds of fat
17Pounds of protein
-1Pounds of milk

HEALTH TRAITS = 40%

40HEALTH TRAIT WEIGHTS
12Productive Life
7Cow Livability
7Daughter Pregnancy Rate
5Calving Ability
-4Somatic Cell Score
2Health Trait Index
2Cow Conception Rate
1Heifer Conception Rate

CONFORMATION TRAITS = 15%

15CONFORMATION TRAIT WEIGHTS
7Udder Composite
-6Body Weight Composite
3Foot & Leg Composite

CM$ = Cheese Merit Dollars

CM$ is an index calculated to account for milk sold to be made into cheese or other dairy products. The current CM$ index was adjusted in August 2018 and the following trait weights are considered. Please take note that trait weights shown have been rounded to the nearest percentage.

Cheese Merit weights

PRODUCTION TRAITS = 52%

52PRODUCTION TRAIT WEIGHTS
21Pounds of protein
23Pounds of fat
-8Pounds of milk

HEALTH TRAITS = 35%

35HEALTH TRAIT WEIGHTS
11Productive Life
6Cow Livability
6Daughter Pregnancy Rate
4Calving Ability
-4Somatic Cell Score
2Health Trait Index
1Cow Conception Rate
1Heifer Conception Rate

CONFORMATION TRAITS = 13%

13CONFORMATION TRAIT WEIGHTS
6Udder Composite
-5Body Weight Composite
2Foot & Leg Composite

FM$ = Fluid Merit Dollars

FM$ is an index calculated by CDCB. It is best suited to dairies operating in a fluid milk market that are paid for total pounds of milk produced (as opposed to payment for components). The current FM$ index was adjusted in August 2018 and the following trait weights are considered.

PRODUCTION TRAITS = 46%

46PRODUCTION TRAIT WEIGHTS
27Pounds of fat
18Pounds of milk

HEALTH TRAITS = 38%

38HEALTH TRAIT WEIGHTS
12Productive Life
7Cow Livability
7Daughter Pregnancy Rate
5Calving Ability
-2Somatic Cell Score
2Health Trait Index
2Cow Conception Rate
1Heifer Conception Rate

CONFORMATION TRAITS = 16%

16CONFORMATION TRAIT WEIGHTS
8Udder Composite
-5Body Weight Composite
3Foot & Leg Composite

GM$ = Grazing Merit Dollars

GM$ is an index calculated by CDCB to most heavily weigh the traits that affect grazing herds preferring seasonal calving. The current GM$ index was adjusted in August 2018 and the following trait weights are considered.

PRODUCTION TRAITS = 38%

38PRODUCTION TRAIT WEIGHTS
23Pounds of fat
14Pounds of protein
1Pounds of milk

HEALTH TRAITS = 46%

46HEALTH TRAIT WEIGHTS
18Daughter Pregnancy Rate
7Productive Life
5Cow Livability
4.5Calving Ability
-3.5Somatic Cell Score
4Cow Conception Rate
2Heifer Conception Rate
2Health Trait Index

CONFORMATION TRAITS = 16%

16CONFORMATION TRAIT WEIGHTS
7Udder Composite
-6Body Weight Composite
3Foot & Leg Composite

GENERAL PROOF TERMS

CDCB:
Council on Dairy Cattle Breeding

Calculates production and health trait information for all breeds

MACE:
Multiple-trait across country evaluation

Denotes that a bull’s proof evaluation includes daughter information from multiple countries

PTA:
Predicted transmitting ability

The estimate of genetic superiority or inferiority for a given trait that an animal is predicted to transmit to its offspring. This value is based on the animal’s own records and the records of known relatives.

EFI:
Effective future inbreeding

An estimate, based on pedigree, of the level of inbreeding that the progeny of a given animal will contribute in the population if mated at random

GFI:
Genomic future inbreeding

Similar to EFI, an animal’s GFI als predicts the level of inbreeding he/she will contribute in the population if mated at random. Yet, GFI provides a more accurate prediction. It takes into account genomic test results and the actual genes an animal has.

aAa:
an independent method for making mating decisions

DMS:
a separate, independent method for making mating decisions

 

PRODUCTION TRAITS

PTAM:
Predicted transmitting ability for milk

PTAP:
Predicted transmitting ability for protein

PTAF:
Predicted transmitting ability for fat

PRel:
the percent reliability of a sire’s production proof

 

HEALTH & FERTILITY TRAITS

PL:
Productive Life

Measured as the total number of additional or fewer productive months that you can expect from a bull’s daughters over their lifetime. Cows receive credit for each month of lactation, with more credit given to the first months around peak production, and less credit given for months further out in lactation. More credit is also given for older cows than for younger animals.  

LIV:
Cow livability

Measure of a cow’s ability to remain alive while in the milking herd.

SCS:
Somatic cell score

The log score of somatic cells per milliliter.

DPR:
Daughter pregnancy rate

Daughter Pregnancy Rate is defined as the percentage of non-pregnant cows that become pregnant during each 21-day period. A DPR of ‘1.0’ implies that daughters from this bull are 1% more likely to become pregnant during that estrus cycle than a bull with an evaluation of zero. Each increase of 1% in PTA DPR equals a decrease of 4 days in PTA days open.

HCR:
Heifer conception rate

A virgin heifer’s ability to conceive – defined as the percentage of inseminated heifers that become pregnant at each service. An HCR of 1.0 implies that daughters of this bull are 1% more likely to become pregnant as a heifer than daughters of a bull with an evaluation of 0.0

CCR:
Cow conception rate

A lactating cow’s ability to conceive – defined as the percentage of inseminated cows that become pregnant at each service. A bull’s CCR of 1.0 implies that daughters of this bull are 1% more likely to become pregnant during that lactation than daughters of a bull with an evaluation of 0.0.

MAST:
expected resistance of an animal’s offspring to clinical mastitis

Daughters of a bull with a MAST value of +1.0 are expected to have 1% fewer cases of mastitis than the average herdmate.

METR:
expected resistance of an animal’s offspring to metritis

Daughters of a bull with a METR value of +1.0 are expected to have 1% fewer recorded cases of metritis than the average herdmate.

KET:
expected resistance of an animal’s offspring to ketosis

Daughters of a bull with a KET value of +1.0 are expected to have 1% fewer recorded cases of ketosis than the average herdmate.

DA:
expected resistance of an animal’s offspring to displaced abomasum

Daughters of a bull with a DA value of +1.0 are expected to have 1% fewer recorded cases of displaced abomasum than the average herdmate.

MFEV:
expected resistance of an animal’s offspring to milk fever (hypocalcemia)

Daughters of a bull with a MFEV value of +1.0 are expected to have 1% fewer recorded cases of milk fever than the average herdmate.

RP:
expected resistance of an animal’s offspring to retained placenta

Daughters of a bull with a RP value of +1.0 are expected to have 1% fewer recorded cases of retained placenta than the average herdmate.

HRel:
the reliability percentage for a sire’s health traits

 

CALVING TRAITS

SCE:
Sire calving ease

The percentage of bull’s calves born that are considered difficult in first lactation animals. Difficult births include those coded as a score of 3, 4 or 5 on a scale of 1-5.

DCE:
Daughter calving ease

The percentage of a bull’s daughters who have difficult births during their first calving. Difficult calvings are those coded as a 3, 4 or 5 on a scale of 1-5.

SSB:
Sire stillbirth

The percentage of a bull’s offspring that are born dead to first lactation animals.

DSB:
Daughter stillbirth

The percentage of a bull’s daughters who give birth to a dead calf in their first lactation.

 

TYPE / CONFORMATION TRAITS

PTAT, UDC and FLC are all calculated by the Holstein Association USA.

PTAT:
Predicted transmitting for type – referring to the total conformation of an animal

UDC:
Udder composite index; comprised of the following linear trait weights:

19% Rear udder height

17% Udder depth

-17% Stature

6% Rear udder width

13% Fore udder attachment

7% Udder Cleft

4% Rear teat optimum

4% Teat length optimum

3% Front teat placement

FLC:
Foot and leg composite index; comprised of the following trait weights:

58% foot and leg classification score

18% rear legs rear view

-17% stature

8% foot angle

TRel = the percent reliability for a sire’s conformation/type proof

 

GENETIC CODES

POLLED

PO:
observed polled

PC:
genomic tested as heterozygous polled; means 50% of offspring are expected to be observed as polled

PP:
genomic tested as homozygous polled; means that 100% of offspring are expected to be observed as polled

COAT COLOR

RC:
carries the recessive gene for red coat color

DR:
carries a dominant gene for red coat color

RECESSIVES & HAPLOTYPES

These codes, or symbols representing the code, will only show up on a proof sheet if an animal is a carrier or test positive for one of the following. The acronyms denoting that an animal is tested free of a recessive will only show up on its pedigree.

BY:
Brachyspina

TY:
Tested free of brachyspina

BL:
BLADS, or Bovine leukocyte adhesion deficiency

TL:
Tested free of BLADS

CV:
CVM or Complex vertebral malformation

TV:
Tested free of CVM

DP:
DUMPS, or Deficiency of the uridine monophosphate synthase

TD:
Tested free of DUMPS

MF:
Mulefoot

TM:
Tested free of mulefoot

HH1, HH2, HH3, HH4, HH5:
Holstein haplotypes that negatively affect fertility

HCD:
Holstein haplotype for cholesterol deficiency

1 Continue Reading →

The proof is in your numbers

Let us show you…

We can show you the proof that genetics are one of the cheapest investments you can make to improve the profitability and efficiency of your herd. Proof sheet numbers may seem unclear or unrealistic. So we break them down to see how they translate within your own herd.

When you use a herd management software program, we can create a genetic assessment of your herd to see if genetics really work on your farm.

Do your 2-year-olds give as many pounds of milk as their sires’ proofs predict? Do these cows become pregnant as quickly as their sires’ DPR numbers suggest? And do daughter stillbirth numbers prove to be accurate indicators of DOAs?

When we do a genetic assessment for your herd, it’s important to realize that we only take into account first-lactation animals in order to minimize environmental effects. Phenotype equals genetics plus environment. So when we eliminate – or at least minimize – environmental influences, the actual performance differences we see are due to genetics.

We want to show you how those proof numbers translate to more pounds of milk, more pregnancies and fewer stillborn calves. So here, we take one of our real DairyComp 305 analyses of a real 1,500-cow herd for answers.

The proof in genetics: PTA Milk (PTAM)

We start with PTAM, which tells us how many more pounds of milk a first-lactation animal will produce compared to herdmates on a 305-day ME basis. We set out to find if higher PTAM values on this farm actually convert to more pounds of milk in the tank.

In this example, we sort all first-lactation animals with a known Holstein sire ID, solely on their sires’ PTAM values. We then compare that to their actual 305-day ME milk records.

As Table 1 shows, based on genetics, we expect the top 25 percent of first-lactation heifers to produce 1,541 more pounds of milk on a 305ME basis than their lower PTAM counterparts. In reality, we see a 2,662-pound difference between the top PTAM animals and the bottom in actual daughter performance.

Table 1: How does selection for PTAM affect actual 305ME performance?
# of cowsAvg. Sire PTAMAvg. 305ME Production
Top 25% high sire PTAM178150844080
Bottom 25% low sire PTAM171-3341418
Difference15412662
This means that for every pound of milk this herd selects for, they actually get an additional 1.69 pounds of milk. So these first-lactation animals are producing well beyond their genetic potential.

Why do they get more than expected?

When we do most on-farm genetic assessments, we find that the 305ME values closely match the predicted difference based on sire PTAM. However, in this example, the production exceeds what’s expected by more than 1,100 pounds.

We often attribute that bonus milk top-level management, where genetics are allowed to express themselves. This particular herd provides a comfortable and consistent environment for all cows. All of these 2-year-olds are fed the same ration, housed in the same barn and given the same routine. At more than a 40,000-pound average 305ME, this is certainly a well-managed herd, which allows the top genetic animals to exceed their genetic production potential.

Perhaps even more importantly, the identification in this herd is more than 95 percent accurate. Without accurate identification, this analysis simply won’t work. That’s because some cows whose real sire information puts them in the bottom quartile will actually appear in the top quartile and vice-versa.

0 0 Continue Reading →

Polled genetics – examine the pros and cons

The polled gene in dairy cattle is dominant over the horned gene

Polled dairy cattle trace back as far as pedigree records have been kept. The polled gene in dairy cattle is dominant over the horned gene. Yet horned cattle are still much more prevalent in the global dairy population because few producers ever chose to select for polled cattle as part of their breeding program. This is because the real, economic paybacks of selecting for production, health and conformation traits has traditionally trumped the desire for polled genetics.

Genomic selection has allowed polled enthusiasts to focus on high ranking polled animals to propagate the polled population. However, producers stressing genetic improvement in other traits are also advancing their genetics at an equally rapid rate.

You can add polled as a criteria to your genetic plan, but must keep in mind the financial repercussions of that decision in terms of the pounds of milk and components you’ll give up, and the health and fertility you may need to sacrifice, just to avoid dehorning.

The more recent public awareness about dehorning cattle has made it another hot button topic in the industry. The naturally hornless cattle have gained popularity in recent years because of consumer opinion on the dehorning process, and the side effects they feel result from it. This perception has driven producers to create more naturally polled animals than ever in the past.

The pros of polled genetics

Despite the genetic and performance sacrifices made by selecting for polled animals, many producers do see the opportunity to incorporate polled genetics into their breeding program.

  • Avoid dehorning

You can save dollars, time, and labor, and also minimize stress on your calves by foregoing the need for dehorning. The average dehorning cost varies from one farm to the next based on the chosen method of dehorning, and there is a chance of causing additional stress on the calves during a crucial growth time.

However, it’s important to remember that modern dehorning methods done properly, and at an early age, will nearly eliminate stress on the calves, and will minimize your time and costs.

  • Cater to consumer perceptions

It’s a fact that consumer perception directs many aspects of the dairy industry’s reality. Animal rights activists have criticized dehorning for years, but it hasn’t been until recently that the general public has joined the activists’ view on dehorning as a detrimental process. With increased awareness about this common farm chore also comes increased consumer demands on how they feel farmers should handle it on their dairies.

We clearly don’t want animals with horns running around dairies, so the question is whether to dehorn calves or breed for polled genetics. Unless consumers are willing to pay a premium for milk from naturally hornless cattle, you will likely be leaving dollars on the table by selecting exclusively for homozygous polled sires if you want to ensure no animals are born with horns.

  • The polled gene is dominant

The basics of genetics tell us that since the polled gene is dominant over the horned gene, animals with one copy of the polled gene and one copy of the horned gene will not have horns, and a naturally hornless animal can be created in one generation. It also means it is easier to make more polled animals faster than if the polled gene was recessive.

An animal can have one of three combinations for the polled/horned gene:

PP = homozygous polled means this animal has no horns, an all offspring from the animal will be born without horns
Pp = heterozygous polled means this animal does not have horns, but offspring may or may not have horns depending on their mate
pp = born with horns

If you’re starting with only horned animals in your herd, the figures below demonstrate your results mating cows to a polled sire. The table on the left shows that a homozygous polled bull bred to a horned cow will result in 100% hornless offspring. The table on the right illustrates that a heterozygous polled sire bred to a horned cow will result in only 50% polled offspring.

The downside to polled genetics

Eliminating the need for dehorning may seem like the right choice for your dairy. However, the genetic sacrifices you will make in order to get to that point cannot be overlooked. Whenever you add extra selection criteria to your genetic plan, you will sacrifice in other areas. Here are just a few reasons to think twice about selecting exclusively for polled genetics in your herd.

  • The continuous need for polled sires
    Like mentioned above, the polled gene is dominant, so you can create a polled offspring in just one generation. What many producers tend to forget is that, at this point, maintaining a population of polled cattle in your herd is much more difficult.

As the images above show, using a heterozygous polled bull will not yield 100% polled offspring. To get to the point of a completely polled herd, and to maintain it once you’re there, you continually need to use only homozygous polled sires. This may not seem difficult, but it leads to the next shortcoming of using exclusively polled sires.

  • Limited availability and variation on polled sires
    Since the prevalence of polled animals within the various dairy breeds is still low, it will still take many generations to genetically eradicate horned animals from your herd if you want to maintain reasonable inbreeding levels.

Even though the number of polled bulls in active AI has increased substantially over recent years, the total number of sires providing that polled gene is still limited. AI companies will only bring in bulls at genetic levels high enough to help you make progress in your herd. And since selection for polled animals has only recently gained popularity, many of the polled bulls are closely related – either from a small group of elite polled cow families or with sires in common.

Even with selection standards in place for elite polled animals, their genetic levels don’t yet match up.

  • Genetic sacrifice and compromised future performance
    Most importantly, at this point in time, polled bulls, as a whole, don’t yet live up to the genetic levels of their horned counterparts. With polled as a strict selection criteria, you will miss out on the best sires, regardless if you select from the genomic or daughter-proven lists. When you figure the amount of production, health and conformation that could be lost by limiting your options to only polled sires, dehorning calves becomes even less of an issue.

Review your pros and cons for polled genetics

As you set your genetic plan keep in mind the pros and cons of selecting exclusively for polled genetics. At this point, the overall genetic and performance levels of horned animals still outpace those of polled cattle. Modern dehorning methods minimize stress on calves, so when performed correctly and at the proper time, it should be almost a non-issue.

On the flip side, you could make a case for exclusively polled sire selection if your milk plant is willing to pay more for milk from polled cattle, or if consumer perception drives your decisions.

Regardless of your selection decision, make sure it aligns with the customized genetic plan you put in place so the genetic progress you make on your farm is in the direction of your goals.

0 0 Continue Reading →

Sire selection vs. mating

“What is the true value of a mating program?”

Many producers around the world have used a mating program within their herd for many years. However, not all producers have put that keen focus on SIRE SELECTION. If you are in that same boat, you may be missing out on the best genetics to drive profitability on your farm.

Selection vs. mating – which is more important?

Before answering this question, it is important to realize what both of these terms mean.

SELECTION – The process of documenting genetic goals to determine which bulls will help you achieve those goals the fastest. In other words, it is identifying which bulls from the available population will be utilized in your herd.

MATING – The process of choosing which individual bull (of those selected for use in your herd) should be used on each individual cow.

Mating programs generally correct problematic type traits of a cow by using a bull whose trait strengths match a cow’s weaknesses. The goal of mating is to breed a consistent herd of cows. There is great merit in consistency, but it’s easy to see that when the right sires are not SELECTED, then MATING has little impact. If you desire to improve the udders in your herd, and only select sires with poor Udder Composite (UDC), you will not improve udders, regardless of whether your cows are mated or not.

Another frequently overlooked point is that even when you SELECT the right bulls, mating also has little impact! For example, if you select only the best UDC sires for your herd, the effect of individual matings will be minimized. Even if there was no mating program in place, you would still be improving udders in your herd simply by using those udder-improving sires.

Are you sacrificing genetic progress?

The value of a mating program is questioned by many dairy farmers. One in particular, who we’ll call Joe, wants to improve the production and health of his herd. With a nice, consistent group of cows, he has determined that the conformation of his herd is already more than adequate. (This is a common thought. You too can test this in your herd by asking yourself or your herdsman how many cows have been culled for conformation reasons in the past month or past year.) For many years, Joe has had his cows mated, but never put much thought into selection.

In Joe’s case, the mating program was run by allowing any bulls from the available lineup who were at least +500 PTAM and >1.0 UDC to be individually mated to each cow. This process meant semen from at least 20 different sires always remained in the tank. Although the topic of this article is not to discuss how many sires should be used at a given time, clearly having that many bulls increases the likelihood of recording errors and reduces efficiency for the breeders.

So, will Joe make more genetic progress for production and health by continuing his current method of mating without selection? Or would he be better off selecting a group of 5-8 bulls that meet his production & health goals, and randomly using those sires within his herd? Hopefully the answer is becoming clear.

Proof in examples

To break it down in the simplest form, if you want to use two different sires on two different cows, you have two options. The first option, shown below in blue, is to mate Cow 1 to Sire A, and Cow 2 to Sire B. The second option, shown in green, is to mate Cow 1 to Sire B and Cow 2 to Sire A.

Sire vs Cow Comparison

Within the table, you can see the resulting offspring’s parent average figures for PTAM and UDC. As you can see, the offspring genetic average for PTAM and UDC are exactly the same, regardless of which cow is mated to which bull. Mating option 1 will give more consistency between daughters, but mating option 2 yields exactly the same genetic average between offspring.

So once you select certain bulls, the average genetic progress of your herd will be the same in the next generation whether the group of bulls are mated to individual cows, or if one bull is randomly selected for use each day of the week.

In one more example, let’s say Joe does an experiment on his farm. He randomly selects half of his herd to breed to Group A sires, and the other half of the herd to Group B sires. Just for the fun of it, we will say that the Group B sires are mated with a traditional program, and the Group A sires are randomly selected, with one bull being used each day of the week.

Group A: 5 sires that average +100 CFP and +4.0 PL

Group B: 5 sires that average +30 CFP and 0.0 PL

The offspring from Group A sires will average 70 lbs more CFP and four extra productive months in the herd than daughters of Group B sires – even though Group A was randomly bred with no mating program. If both groups were individually mated, the difference between the offspring of each group would still be exactly the same. Daughters of Group A sires will still yield 70 lbs more CFP and four more productive months in the herd than daughters of Group B sires!

What is the value in mating programs?

The quick answer from a purely genetic standpoint is that the value in mating is minimal at best. But there are a couple benefits.

First of all, the mating staff is often the same staff with whom you set your genetic goals.  Having people you trust help you design and build your genetic program is extremely important.

The second value of a mating program comes through inbreeding protection.  We do not want daughters of a given bull to be bred to their brother, uncle, nephew, or worse yet their father himself!  Mating programs do a good job of reducing inbreeding within your herd. However, in order to maximize this value from a mating program you must have two things in good order on your dairy:

  1. Your Identification must be accurate – not knowing the real sire of a cow, makes inbreeding protection impossible.
  2. The technicians must closely follow the mating recommendations. There are way too many herds that go through the process of mating the cows, but very few of those mates are actually followed.

 

This article is not written to discourage anyone from mating. Mating can help create a consistent group of cows. And for those interested in breeding a “great” cow, protecting faults is important.

However, if inbreeding prevention is the reason for mating, you must ask yourself if it is still necessary to have someone look at cows to mate them. Both a pen mating, which tells which bulls should be avoided on an individual animal, or pen of animals, and a pedigree mating are effective options to minimize inbreeding.

Drive genetic progress – put a plan in place

There are two important concepts to remember when setting genetic goals, and selecting bulls that fit those goals.

  1. We cannot mate our way out of a bad selection decision
  2. When you select the proper bulls to fit your genetic plan, you will maximize genetic progress, even with no individual matings. However it is good practice to utilize a pedigree or pen mating to ensure inbreeding is managed.

The most important concept to remember is that genetic progress is driven by the goals you set and the bulls you use on your dairy – not the individual cows to which those bulls are mated.

So in order to maximize genetic progress and profitability on your farm, be sure to spend at least as much time setting your genetic goals and defining your selection program as you do on your mating program

0 0 Continue Reading →

Two questions that will transform the way you breed your herd

There’s no other dairy farm in the world exactly like yours. So it’s important to ask yourself a couple questions to determine your ideal breeding goals.

You could use one of the US industry standard indexes to select the genetics for your herd. Their split weights on production, health and conformation will certainly help you make genetic gains in your herd. But will that progress actually match your farm’s current situation and future plans?

As a reminder, the following charts show the weights for the two most common US genetic indexes.

TPI:
Image to show the weights on production, health and type for the TPI Index
NM:
A bar showing the breakdown weights of Net Merit $ as 45% on Production traits, 40% on health traits and 15% on type traits

Since your farm is unique, your best option is to create your own customized genetic plan to get the right genetics to match your goals.

Ask yourself these two important questions to decide which traits to emphasize in your genetic plan.

1. How do you get paid for your milk?

The majority of dairy producers make their main profit from the sale of milk. How that milk is priced varies greatly from one part of the country to another. Most milk produced in Florida is sold for fluid consumption, while much of Wisconsin’s milk goes into making cheese. The milk from some farms goes strictly into butter. Others’ is made into ice cream. Many cooperatives also pay premiums for low somatic cell counts.

Regardless where you ship your milk, the simple way to maximize your milk check is to select the right genetics to match your situation. To explain this, we focus in on the production traits of your genetic plan, which include milk, fat and protein.

If your farm’s milk is made into cheese, you’re likely paid on components, rather than total fluid volume. In that case, selection emphasis on protein will garner your greatest return on genetic investment.

If you farm in a fluid milk market, strict selection for NM$ could actually hinder your progress since NM$ includes a negative weighting on total pounds of milk.

Management practices play the largest role in the performance you see, but the right genetic choices will aid your future profit potential. For example, it takes top-level management practices to achieve ideal somatic cell counts. Yet, if your milk company offers milk quality premiums, genetic selection for low Somatic Cell Score is a logical choice to boost the benefits of your management even further.

Don’t leave dollars on the table. Within your genetic plan, make sure you emphasize the production traits to match how you get paid for your milk.

2. Why do your cows leave the herd?

Regardless if you are in expansion mode or maintaining steady numbers, some animals will leave your herd for one reason or another.

If you’re gradually growing to prepare for a future expansion project, you’ll benefit from heavier genetic selection emphasis on traits like Productive Life. This will keep your cattle numbers on the rise by creating healthier, longer-living cows.

Selection for CONCEPT PLUS high sire fertility will help you create more pregnancies now. Selection for fertility traits like Daughter Pregnancy Rate will help you create a next generation of more fertile females. If you focus on both male and female fertility you will end up with the additional replacements you’ll need.

On the flip side, if your farm is at max capacity with more replacements than you can accommodate, different traits will make a more profitable impact. If your farm sells extra springing heifers or fresh two-year-olds for dairy purposes, you know that buyers choose the stronger, well-grown animals with ideal feet and legs and favorable udders. In that case, a heavier selection emphasis on Udder Composite and Foot & Leg Composite can provide profitable returns on your genetic investment.

However, when your herd size is steady and you don’t sell extra heifers for dairy purposes, it’s important to question your selection for conformation traits. How many cows have you culled in the past year for poor udders or feet and legs?

If the answer is none, you could be limiting your future profitability.

AI companies already provide you with a high level of selection intensity for conformation. Their sire criteria often uses those industry standard indexes with 26% or 16% emphasis on conformation.

If you emphasize conformation traits, but you don’t cull any animals for poor udders or feet and legs, you are missing out on future profits. When you put your weight on conformation, your sacrifice extra selection for production, improved health and additional pregnancies.

Consider your genetic plan

There’s no other dairy in the world identical to yours.

Keep that in mind as you choose the genetics to create your next generation. While industry standard selection indexes can improve your genetics, they don’t necessarily align with your farm’s situation and goals.

Think about how you get paid for milk and the main reasons that cows leave your herd. When you customize your genetic plan to fit your farm’s needs, you will maximize your future milk checks and minimize your involuntary culls.

0 Continue Reading →
x

Get the BullSearch App!

For the best experience on a mobile device, download the Bull Search App

Download the App
Go to desktop site anyway