Skip to Content

Blog Archives

A genetic approach to improved fertility

Alta 4-EVENT COWS don’t happen by accident. It takes a clear focus on the best day-to-day management, and a long-term plan toward breeding and developing a healthy, fertile, and productive herd.

Here, we focus in on how the decisions you make on breeding and genetics can help you create more 4-EVENT COWS in your herd. We share two ways – plus some proof – that genetics are a key piece of the puzzle in main­taining a trouble-free, profitable herd – now and down the road.

1. CREATE MORE PREGNANCIES NOW

If you’re looking for a fertility advantage on inseminations today, sire fertility rankings are where you’ll want to focus. The Alta CONCEPT PLUS sire fertility evaluation ranks each sire on his ability to get cows pregnant. In fact, regardless which semen type you use in your breeding strategy, you’ll find high fertility CONCEPT PLUS options to fit.

Why should you trust Alta’s CONCEPT PLUS ratings? They are based on real pregnancy check results from progressive dairy herds throughout North America. The evaluation also maintains accuracy by accounting for factors like number of times bred, month/season, technician and breeding code effects.

 

  • CONCEPT PLUS DxD – high fertility sires will give you a 2%-5% greater chance at creating a pregnancy with conventional semen.
  • 511 CONCEPT PLUS – high fertility SexedULTRA sires offer a 4%-9% conception rate advantage over the average sexed bull
  • CONCEPT PLUS BxD – high fertility beef x dairy sires give you a 2%-5% greater chance at creating a conventional pregnancy than the average beef bull used on dairy cows.

If you’re more familiar with sire conception rate (SCR), keep in mind that Alta’s CONCEPT PLUS evaluation is more complete, current, and consistent – and actually served as a basis for SCR. The table below compares what’s included and accounted for in each evaluation.

Comparing sire fertility evaluationsSCRCONCEPT PLUS
Based on real pregnancy check dataXX
Accounts for various factors affecting fertility, including age, month, herd, service number and lactationXX
COMPLETE
Separate ratings available per semen type: conventional, sexed, and beef x dairy breedingsX
Accounts for additional factors affecting fertility, like technician and breeding code effectsX
Data is collected from progressive dairies in North America, and not restricted to US farms on official testX
CURRENT
Ongoing data is collected and evaluated directly from DairyComp and other herd management programsX
Updates are available every other monthX
CONSISTENT
Data is gathered only from large-herd environments with progressive management and reproduction programsX

2. CREATE MORE FERTILE COWS FOR THE FUTURE

While sire fertility selection can get you more pregnancies, and more Alta 4-EVENT COWS now, it takes a long-term plan and genetic selection for female fertility to ensure your herd’s reproduction continues to improve.

Daughter pregnancy rate (DPR), heifer conception rate (HCR) and cow conception rate (CCR) all provide a genetic basis for creating more fertile females. Emphasizing one, or any combination, of these traits in your customized genetic plan means you are breeding a next generation of cows with a greater ability to conceive.

Daughter pregnancy rate is defined as the number of non-pregnant cows that become pregnant within each 21-day period. When a sire has a DPR of 1.0, it means that his daughters are 1% more likely than the average herdmate to become pregnant in a given 21-day window. And each added point of DPR equates to 4 fewer days open.

When referring to HCR and CCR, these traits are defined respectively as a virgin heifer or lactating cow’s ability to conceive. For each of these traits, when a sire has a value of 1.0, it means that his daughters are 1% more likely to conceive than daughters of a sire with an HCR or CCR of 0.0. While DPR is a slightly different calculation than HCR or CCR, all three are a way to measure the fertility of the female herself.

It’s clear to see that the high DPR sires, do indeed, create daughters that become pregnant more quickly than the daughters of low DPR sires.

Lactation 1 cows# of cowsAverage Sire DPRActual Preg rate
Top 25% for highest Sire DPR1742.327%
Bottom 25% for lowest Sire DPR137-1.120%
Difference3.47%

IMPROVE FERTILITY RESULTS – NOW AND INTO THE FUTURE

If your goal is to create more Alta 4-EVENT COWS through improved fertility and reproduction, don’t miss out on the impact that genetics can make in taking you to that next level. Despite the low heritability of fertility traits like DPR, these two tips will help improve your herd’s reproductive results now and into the future:

  1. Improve conception rates now by using sires with the high fertility CONCEPT PLUS rating to boost your herd’s current conception rates.
  2. Improve fertility for the future of your herd by including DPR and/or HCR and CCR in your customized genetic plan to create a next generation of more fertile females.
0 Continue Reading →

Proof terminology explained

The letters, numbers and acronyms on a proof sheet can be complicated. Here, we break down the meaning and explanation of the proof indexes, traits and terminology.

Selection indexes

Genetic selection indexes are set by national organizations or breed associations. Genetic indexes help dairy producers focus on a total approach to genetic improvement, rather than limiting progress by single trait selection.

However, each farm is unique, with different situations and future plans. With that in mind, it’s important to understand what traits are included in each industry standard index. When you know what’s included, you can more effectively evaluate if the index truly matches your farm’s goals.

TPI = Total Performance Index

TPI is calculated by the Holstein Association USA (HA-USA) and includes the following trait weightings.

TPI Formula

PRODUCTION TRAITS = 46%

46PRODUCTION TRAIT WEIGHTS
19Pounds of protein
19Pounds of fat
8Feed efficiency

HEALTH TRAITS = 29%

29HEALTH TRAIT WEIGHTS
13Fertility Index
5Productive Life
-4Somatic Cell Score
3Cow Livability
2CDCB Health Trait Index
1Daughter Calving Ease
1Daughter Stillbirth

CONFORMATION TRAITS = 25%

25CONFORMATION TRAIT WEIGHTS
11Udder Composite
8PTA Type
6Foot & Leg Composite

NM$ = Net Merit Dollars

NM$ is a genetic index value calculated by the Council on Dairy Cattle Breeding (CDCB). It describes the expected lifetime profit per cow as compared to the reference base population born in 2015. Trait weightings are generally updated approximately every five years and include emphasis on the following traits. The current trait breakdown is in place as of August 2018. Please note that trait weights are rounded to the nearest percentage.

Net Merit$ breakdown

PRODUCTION TRAITS = 45%

45PRODUCTION TRAIT WEIGHTS
27Pounds of fat
17Pounds of protein
-1Pounds of milk

HEALTH TRAITS = 40%

40HEALTH TRAIT WEIGHTS
12Productive Life
7Cow Livability
7Daughter Pregnancy Rate
5Calving Ability
-4Somatic Cell Score
2Health Trait Index
2Cow Conception Rate
1Heifer Conception Rate

CONFORMATION TRAITS = 15%

15CONFORMATION TRAIT WEIGHTS
7Udder Composite
-6Body Weight Composite
3Foot & Leg Composite

CM$ = Cheese Merit Dollars

CM$ is an index calculated to account for milk sold to be made into cheese or other dairy products. The current CM$ index was adjusted in August 2018 and the following trait weights are considered. Please take note that trait weights shown have been rounded to the nearest percentage.

Cheese Merit weights

PRODUCTION TRAITS = 52%

52PRODUCTION TRAIT WEIGHTS
21Pounds of protein
23Pounds of fat
-8Pounds of milk

HEALTH TRAITS = 35%

35HEALTH TRAIT WEIGHTS
11Productive Life
6Cow Livability
6Daughter Pregnancy Rate
4Calving Ability
-4Somatic Cell Score
2Health Trait Index
1Cow Conception Rate
1Heifer Conception Rate

CONFORMATION TRAITS = 13%

13CONFORMATION TRAIT WEIGHTS
6Udder Composite
-5Body Weight Composite
2Foot & Leg Composite

FM$ = Fluid Merit Dollars

FM$ is an index calculated by CDCB. It is best suited to dairies operating in a fluid milk market that are paid for total pounds of milk produced (as opposed to payment for components). The current FM$ index was adjusted in August 2018 and the following trait weights are considered.

PRODUCTION TRAITS = 46%

46PRODUCTION TRAIT WEIGHTS
27Pounds of fat
18Pounds of milk

HEALTH TRAITS = 38%

38HEALTH TRAIT WEIGHTS
12Productive Life
7Cow Livability
7Daughter Pregnancy Rate
5Calving Ability
-2Somatic Cell Score
2Health Trait Index
2Cow Conception Rate
1Heifer Conception Rate

CONFORMATION TRAITS = 16%

16CONFORMATION TRAIT WEIGHTS
8Udder Composite
-5Body Weight Composite
3Foot & Leg Composite

GM$ = Grazing Merit Dollars

GM$ is an index calculated by CDCB to most heavily weigh the traits that affect grazing herds preferring seasonal calving. The current GM$ index was adjusted in August 2018 and the following trait weights are considered.

PRODUCTION TRAITS = 38%

38PRODUCTION TRAIT WEIGHTS
23Pounds of fat
14Pounds of protein
1Pounds of milk

HEALTH TRAITS = 46%

46HEALTH TRAIT WEIGHTS
18Daughter Pregnancy Rate
7Productive Life
5Cow Livability
4.5Calving Ability
-3.5Somatic Cell Score
4Cow Conception Rate
2Heifer Conception Rate
2Health Trait Index

CONFORMATION TRAITS = 16%

16CONFORMATION TRAIT WEIGHTS
7Udder Composite
-6Body Weight Composite
3Foot & Leg Composite

GENERAL PROOF TERMS

CDCB:
Council on Dairy Cattle Breeding

Calculates production and health trait information for all breeds

MACE:
Multiple-trait across country evaluation

Denotes that a bull’s proof evaluation includes daughter information from multiple countries

PTA:
Predicted transmitting ability

The estimate of genetic superiority or inferiority for a given trait that an animal is predicted to transmit to its offspring. This value is based on the animal’s own records and the records of known relatives.

EFI:
Effective future inbreeding

An estimate, based on pedigree, of the level of inbreeding that the progeny of a given animal will contribute in the population if mated at random

GFI:
Genomic future inbreeding

Similar to EFI, an animal’s GFI als predicts the level of inbreeding he/she will contribute in the population if mated at random. Yet, GFI provides a more accurate prediction. It takes into account genomic test results and the actual genes an animal has.

aAa:
an independent method for making mating decisions

DMS:
a separate, independent method for making mating decisions

 

PRODUCTION TRAITS

PTAM:
Predicted transmitting ability for milk

PTAP:
Predicted transmitting ability for protein

PTAF:
Predicted transmitting ability for fat

PRel:
the percent reliability of a sire’s production proof

 

HEALTH & FERTILITY TRAITS

PL:
Productive Life

Measured as the total number of additional or fewer productive months that you can expect from a bull’s daughters over their lifetime. Cows receive credit for each month of lactation, with more credit given to the first months around peak production, and less credit given for months further out in lactation. More credit is also given for older cows than for younger animals.  

LIV:
Cow livability

Measure of a cow’s ability to remain alive while in the milking herd.

SCS:
Somatic cell score

The log score of somatic cells per milliliter.

DPR:
Daughter pregnancy rate

Daughter Pregnancy Rate is defined as the percentage of non-pregnant cows that become pregnant during each 21-day period. A DPR of ‘1.0’ implies that daughters from this bull are 1% more likely to become pregnant during that estrus cycle than a bull with an evaluation of zero. Each increase of 1% in PTA DPR equals a decrease of 4 days in PTA days open.

HCR:
Heifer conception rate

A virgin heifer’s ability to conceive – defined as the percentage of inseminated heifers that become pregnant at each service. An HCR of 1.0 implies that daughters of this bull are 1% more likely to become pregnant as a heifer than daughters of a bull with an evaluation of 0.0

CCR:
Cow conception rate

A lactating cow’s ability to conceive – defined as the percentage of inseminated cows that become pregnant at each service. A bull’s CCR of 1.0 implies that daughters of this bull are 1% more likely to become pregnant during that lactation than daughters of a bull with an evaluation of 0.0.

MAST:
expected resistance of an animal’s offspring to clinical mastitis

Daughters of a bull with a MAST value of +1.0 are expected to have 1% fewer cases of mastitis than the average herdmate.

METR:
expected resistance of an animal’s offspring to metritis

Daughters of a bull with a METR value of +1.0 are expected to have 1% fewer recorded cases of metritis than the average herdmate.

KET:
expected resistance of an animal’s offspring to ketosis

Daughters of a bull with a KET value of +1.0 are expected to have 1% fewer recorded cases of ketosis than the average herdmate.

DA:
expected resistance of an animal’s offspring to displaced abomasum

Daughters of a bull with a DA value of +1.0 are expected to have 1% fewer recorded cases of displaced abomasum than the average herdmate.

MFEV:
expected resistance of an animal’s offspring to milk fever (hypocalcemia)

Daughters of a bull with a MFEV value of +1.0 are expected to have 1% fewer recorded cases of milk fever than the average herdmate.

RP:
expected resistance of an animal’s offspring to retained placenta

Daughters of a bull with a RP value of +1.0 are expected to have 1% fewer recorded cases of retained placenta than the average herdmate.

HRel:
the reliability percentage for a sire’s health traits

 

CALVING TRAITS

SCE:
Sire calving ease

The percentage of bull’s calves born that are considered difficult in first lactation animals. Difficult births include those coded as a score of 3, 4 or 5 on a scale of 1-5.

DCE:
Daughter calving ease

The percentage of a bull’s daughters who have difficult births during their first calving. Difficult calvings are those coded as a 3, 4 or 5 on a scale of 1-5.

SSB:
Sire stillbirth

The percentage of a bull’s offspring that are born dead to first lactation animals.

DSB:
Daughter stillbirth

The percentage of a bull’s daughters who give birth to a dead calf in their first lactation.

 

TYPE / CONFORMATION TRAITS

PTAT, UDC and FLC are all calculated by the Holstein Association USA.

PTAT:
Predicted transmitting for type – referring to the total conformation of an animal

UDC:
Udder composite index; comprised of the following linear trait weights:

19% Rear udder height

17% Udder depth

-17% Stature

6% Rear udder width

13% Fore udder attachment

7% Udder Cleft

4% Rear teat optimum

4% Teat length optimum

3% Front teat placement

FLC:
Foot and leg composite index; comprised of the following trait weights:

58% foot and leg classification score

18% rear legs rear view

-17% stature

8% foot angle

TRel = the percent reliability for a sire’s conformation/type proof

 

GENETIC CODES

POLLED

PO:
observed polled

PC:
genomic tested as heterozygous polled; means 50% of offspring are expected to be observed as polled

PP:
genomic tested as homozygous polled; means that 100% of offspring are expected to be observed as polled

COAT COLOR

RC:
carries the recessive gene for red coat color

DR:
carries a dominant gene for red coat color

RECESSIVES & HAPLOTYPES

These codes, or symbols representing the code, will only show up on a proof sheet if an animal is a carrier or test positive for one of the following. The acronyms denoting that an animal is tested free of a recessive will only show up on its pedigree.

BY:
Brachyspina

TY:
Tested free of brachyspina

BL:
BLADS, or Bovine leukocyte adhesion deficiency

TL:
Tested free of BLADS

CV:
CVM or Complex vertebral malformation

TV:
Tested free of CVM

DP:
DUMPS, or Deficiency of the uridine monophosphate synthase

TD:
Tested free of DUMPS

MF:
Mulefoot

TM:
Tested free of mulefoot

HH1, HH2, HH3, HH4, HH5:
Holstein haplotypes that negatively affect fertility

HCD:
Holstein haplotype for cholesterol deficiency

1 Continue Reading →

The proof is in your numbers

Let us show you…

We can show you the proof that genetics are one of the cheapest investments you can make to improve the profitability and efficiency of your herd. Proof sheet numbers may seem unclear or unrealistic. So we break them down to see how they translate within your own herd.

When you use a herd management software program, we can create a genetic assessment of your herd to see if genetics really work on your farm.

Do your 2-year-olds give as many pounds of milk as their sires’ proofs predict? Do these cows become pregnant as quickly as their sires’ DPR numbers suggest? And do daughter stillbirth numbers prove to be accurate indicators of DOAs?

When we do a genetic assessment for your herd, it’s important to realize that we only take into account first-lactation animals in order to minimize environmental effects. Phenotype equals genetics plus environment. So when we eliminate – or at least minimize – environmental influences, the actual performance differences we see are due to genetics.

We want to show you how those proof numbers translate to more pounds of milk, more pregnancies and fewer stillborn calves. So here, we take one of our real DairyComp 305 analyses of a real 1,500-cow herd for answers.

The proof in genetics: PTA Milk (PTAM)

We start with PTAM, which tells us how many more pounds of milk a first-lactation animal will produce compared to herdmates on a 305-day ME basis. We set out to find if higher PTAM values on this farm actually convert to more pounds of milk in the tank.

In this example, we sort all first-lactation animals with a known Holstein sire ID, solely on their sires’ PTAM values. We then compare that to their actual 305-day ME milk records.

As Table 1 shows, based on genetics, we expect the top 25 percent of first-lactation heifers to produce 1,541 more pounds of milk on a 305ME basis than their lower PTAM counterparts. In reality, we see a 2,662-pound difference between the top PTAM animals and the bottom in actual daughter performance.

Table 1: How does selection for PTAM affect actual 305ME performance?
# of cowsAvg. Sire PTAMAvg. 305ME Production
Top 25% high sire PTAM178150844080
Bottom 25% low sire PTAM171-3341418
Difference15412662
This means that for every pound of milk this herd selects for, they actually get an additional 1.69 pounds of milk. So these first-lactation animals are producing well beyond their genetic potential.

Why do they get more than expected?

When we do most on-farm genetic assessments, we find that the 305ME values closely match the predicted difference based on sire PTAM. However, in this example, the production exceeds what’s expected by more than 1,100 pounds.

We often attribute that bonus milk top-level management, where genetics are allowed to express themselves. This particular herd provides a comfortable and consistent environment for all cows. All of these 2-year-olds are fed the same ration, housed in the same barn and given the same routine. At more than a 40,000-pound average 305ME, this is certainly a well-managed herd, which allows the top genetic animals to exceed their genetic production potential.

Perhaps even more importantly, the identification in this herd is more than 95 percent accurate. Without accurate identification, this analysis simply won’t work. That’s because some cows whose real sire information puts them in the bottom quartile will actually appear in the top quartile and vice-versa.

0 0 Continue Reading →
x

Get the BullSearch App!

For the best experience on a mobile device, download the Bull Search App

Download the App
Go to desktop site anyway